28,268 research outputs found

    The Milky Way Galaxy as a Strong Gravitational Lens

    Get PDF
    We study the gravitational lensing effects of spiral galaxies by taking a model of the Milky Way and computing its lensing properties. The model is composed of a spherical Hernquist bulge, a Miyamoto-Nagai disc and an isothermal halo. As a strong lens, a spiral galaxy like the Milky Way can give rise to four different imaging geometries. They are (i) three images on one side of the galaxy centre (`disc triplets'), (ii) three images with one close to the centre (`core triplets'), (iii) five images and (iv) seven images. Neglecting magnification bias, we show that the core triplets, disc triplets and fivefold imaging are roughly equally likely. Even though our models contain edge-on discs, their image multiplicities are not dominated by disc triplets. The halo has a small effect on the caustic structure, the time delays and brightnesses of the images. The Milky Way model has a maximum disc (i.e., the halo is not dynamically important in the inner parts). Strong lensing by nearly edge-on disc galaxies breaks the degeneracy between the relative contribution of the disc and halo to the overall rotation curve. If a spiral galaxy has a sub-maximum disc, then the astroid caustic shrinks dramatically in size, whilst the radial caustic shrinks more modestly. This causes changes in the relative likelihood of the image geometries, specifically (i) core triplets are now 9/2 times more likely than disc triplets, (ii) the cross section for threefold imaging is reduced by a factor of 2/3, whilst (iii) the cross section for fivefold imaging is reduced by 1/2. Although multiple imaging is less likely (the cross sections are smaller), the average total magnification is greater.Comment: MNRAS, in pres

    Sigma Model BPS Lumps on Torus

    Full text link
    We study doubly periodic Bogomol'nyi-Prasad-Sommerfield (BPS) lumps in supersymmetric CP^{N-1} non-linear sigma models on a torus T^2. Following the philosophy of the Harrington-Shepard construction of calorons in Yang-Mills theory, we obtain the n-lump solutions on compact spaces by suitably arranging the n-lumps on R^2 at equal intervals. We examine the modular invariance of the solutions and find that there are no modular invariant solutions for n=1,2 in this construction.Comment: 15 pages, 3 figures, published versio

    WordRank: Learning Word Embeddings via Robust Ranking

    Full text link
    Embedding words in a vector space has gained a lot of attention in recent years. While state-of-the-art methods provide efficient computation of word similarities via a low-dimensional matrix embedding, their motivation is often left unclear. In this paper, we argue that word embedding can be naturally viewed as a ranking problem due to the ranking nature of the evaluation metrics. Then, based on this insight, we propose a novel framework WordRank that efficiently estimates word representations via robust ranking, in which the attention mechanism and robustness to noise are readily achieved via the DCG-like ranking losses. The performance of WordRank is measured in word similarity and word analogy benchmarks, and the results are compared to the state-of-the-art word embedding techniques. Our algorithm is very competitive to the state-of-the- arts on large corpora, while outperforms them by a significant margin when the training set is limited (i.e., sparse and noisy). With 17 million tokens, WordRank performs almost as well as existing methods using 7.2 billion tokens on a popular word similarity benchmark. Our multi-node distributed implementation of WordRank is publicly available for general usage.Comment: Conference on Empirical Methods in Natural Language Processing (EMNLP), November 1-5, 2016, Austin, Texas, US

    Sine-Gordon Soliton on a Cnoidal Wave Background

    Full text link
    The method of Darboux transformation, which is applied on cnoidal wave solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave background. Interesting characteristics of the solution, i.e., the velocity of solitons and the shift of crests of cnoidal waves along a soliton, are calculated. Solutions are classified into three types (Type-1A, Type-1B, Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change

    Numerical simulation of super-square patterns in Faraday waves

    Full text link
    We report the first simulations of the Faraday instability using the full three-dimensional Navier-Stokes equations in domains much larger than the characteristic wavelength of the pattern. We use a massively parallel code based on a hybrid Front-Tracking/Level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. Simulations performed in rectangular and cylindrical domains yield complex patterns. In particular, a superlattice-like pattern similar to those of [Douady & Fauve, Europhys. Lett. 6, 221-226 (1988); Douady, J. Fluid Mech. 221, 383-409 (1990)] is observed. The pattern consists of the superposition of two square superlattices. We conjecture that such patterns are widespread if the square container is large compared to the critical wavelength. In the cylinder, pentagonal cells near the outer wall allow a square-wave pattern to be accommodated in the center

    Semiconducting-to-metallic photoconductivity crossover and temperature-dependent Drude weight in graphene

    Get PDF
    We investigated the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrated that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. Our observations are accounted for by considering the interplay between photo-induced changes of both the Drude weight and the carrier scattering rate. Notably, we observed multiple sign changes in the temporal photoconductivity dynamics at low carrier density. This behavior reflects the non-monotonic temperature dependence of the Drude weight, a unique property of massless Dirac fermions

    A supermassive binary black hole with triple disks

    Full text link
    Hierarchical structure formation inevitably leads to the formation of supermassive binary black holes (BBHs) with a sub-parsec separation in galactic nuclei. However, to date there has been no unambiguous detection of such systems. In an effort to search for potential observational signatures of supermassive BBHs, we performed high-resolution smoothed particle hydrodynamics (SPH) simulations of two black holes in a binary of moderate eccentricity surrounded by a circumbinary disk. Building on our previous work, which has shown that gas can periodically transfer from the circumbinary disk to the black holes when the binary is on an eccentric orbit, the current set of simulations focuses on the formation of the individual accretion disks, their evolution and mutual interaction, and the predicted radiative signature. The variation in mass transfer with orbital phase from the circumbinary disk induces periodic variations in the light curve of the two accretion disks at ultraviolet wavelengths, but not in the optical or near-infrared. Searches for this signal offer a promising method to detect supermassive BBHs.Comment: Accepted for publication in the Astrophysical Journal, 16 pages, 11 figures. High Resolution Version is Available at http://www2.yukawa.kyoto-u.ac.jp/~kimitake/bbhs.htm
    • 

    corecore